Three Key Considerations When Using Water as a Heat Transfer Medium

Water (H2O), the most abundant substance on earth, is also a universal solvent.  From rivers and lakes to seas and oceans, water is the main ingredient but its composition varies because of its solvent properties. As water falls through the air, it absorbs gases and picks up particulates such as dust and pollen. Then, as it trickles down through soil and rocks, it dissolves minerals along the way. As a result, water quality varies greatly both regionally and seasonally.

cooling towers

Water vapor rises from cooling towers at power plants, hospitals, hotels and other large facilities.

Water is also a highly effective heat transfer medium. Heat transfer is the process whereby thermal energy or heat moves from one body or substance to another, and from hot to cold. We’ve all noticed the large plumes rising from a hospital, hotel or a power plant. 

Read More icon

 
 

Supplementary “Duct” Firing for Combined Cycle Power Plants & How it Compares to TIAC

While both Supplementary or Duct Firing and Turbine Inlet Air Chilling (TIAC) are solutions to offset the megawatt output degradation of gas turbines when ambient temperatures rise, the two technologies take very different approaches.  With TIAC, the combustion gas turbine inlet air is chilled. In the case of duct firing, injection of fuel is utilized to increase the temperature and mass flow rate of the exhaust gases.

Rather than competing, the two technologies – duct firing and turbine inlet cooling – can actually complement each other when used correctly.

For maximum power output, power plant owners can utilizing the reliable power augmentation provided by TIAC, and balance the requirements with duct firing.  This scenario allows them to produce the required power at the lowest possible heat rate.

However, the combination of TIAC with Duct Firing is rare – most owners choose one solution over the other. Let’s look at how Duct Firing works.

Read More icon